<input id="kwcsw"></input>
  • <input id="kwcsw"></input>
  • <samp id="kwcsw"></samp>
  • <blockquote id="kwcsw"></blockquote>
    <input id="kwcsw"><object id="kwcsw"></object></input><blockquote id="kwcsw"></blockquote>
    2019年11月25日學術報告通知
    發布人: 網站管理員 發布時間: 2019-11-19 作者: 訪問次數: 319

    報告題目:Interface Engineering of Photocatalysts and Electrocatalysts Toward Efficient Solar/electricity Fuel Production

    開始時間:2019-11-25  15:00-16:00

    報告地點:商學院大樓 205

      人:南京大學鐘苗研究員

      人:楊化桂 教授

    備注:

    個人簡介:

    鐘苗,博士,南京大學現代工程與應用科學學院研究員。本科畢業于上海交通大學應用物理系,博士畢業于日本東京大學工學院機械工學系。其后在東京大學任日本學生振興學會(JSPS)博士后及日本新能源產業技術開發機構(NEDO)特任研究員;在加拿大多倫多大學電子與計算機科學系任博士后研究員。主要從事太陽能光電轉換器件、太陽能光分解水產氫,電催化還原二氧化碳等相關研究課題。第一作者共發表學術著作章節2章,主編學術書籍1本,日本和美國專利各1項。在J. Am. Chem. Soc., Angew. Chem., Energy Environ. Sci., Nat. Mater., Nat. Catalysis等學術期刊上發表論文30余篇。獲得上海市優秀碩士畢業論文,日本第21屆材料學會年輕科學家獎。

    報告摘要:

    能源短缺與環境污染是當前世界所面臨的嚴峻挑戰。利用地球上豐富的太陽能或利用太陽能、風能等產生的清潔電能,通過安全、溫和的電化學手段bob电竞竞猜,全分解水制氫或還原二氧化碳制燃料或高附加值化工原料,是解決當前能源與環境問題的有效手段之一。

    在太陽光全分解水制氫部分,我們將以光陽極材料ZnO:GaN,BiVO4Ta3N5為例bob电竞竞猜,通過1)合成高質量的光電催化本體材料bob电竞竞猜,2)構建表面異質結,3)助催化劑表面改性,的思路bob电竞竞猜,分別實現了ZnO:GaN,BiVO4Ta3N5單結條件下,高效率的太陽能到氫能轉換,且具有較好的穩定性。在電催化還原二氧化碳部分bob电竞竞猜,我們針對二氧化碳還原反應中關鍵碳碳偶聯部分,通過理論計算和實驗相結合的方式,合理設計和優化Cu基催化劑bob电竞竞猜,實現了大電流密度下二氧化碳到乙烯的高選擇性和能量效率。上述結果,可能對進一步實現高效率太陽能全分解水制氫和電催化還原二氧化碳制多碳提供參考。

     

    報告題目:Advancing oxide photoelectrode performance by enhanced carrier transport towards standalone solar water splitting

    開始時間:2019-11-25  16:00-17:00

    報告地點:商學院大樓 205

      人:瑞士洛桑聯邦理工學院潘林楓博士

      人:楊化桂 教授

    備注:

    About the speaker

    Dr. Linfeng Pan

    2019. 8-present     Postdoc in Ecole Polytechnique Fédérale de Lausanne, Switzerland.

    2015. 7-2019. 7     Ph.D. in Ecole Polytechnique Fédérale de Lausanne, Switzerland

    2012. 9-2015. 6     Master of Science in East China University of Science and Technology

    2008. 9-2012. 6     Bachelor of Engineering in Nanjing Tech University

    Abstract of the talk

    As a scalable and sustainable technology for carbon-neutral production of hydrogen, solar-driven water splitting provides a means to address major concerns that have been raised over the security of our energy future. Nevertheless, even for the most technologically advanced solar-fuel systems, it is still challenging to simultaneously fulfill the requirements of being efficient, robust and scalable. Here, we show the recent development of one of the most promising oxide-based semiconducting photoelectrodes–cuprous oxide (Cu2O) photocathodes. We highlight the key steps that take Cu2O photoelectrodes towards being an efficient solar energy converter, which have advanced this field in our group. Using advanced thin film deposition techniques, conformal semiconductor layers are applied on nanostructured photo absorbers, which allows efficient charge separation, light harvesting and robust protection. In the latest progress gallium oxide that has suitable conduction band alignment with cuprous oxide has been applied as electron selective layer and achieved unprecedented overall performance. Finally, an all earth-abundant photocathode was demonstrated in alkaline electrolyte. Current and future research on regulating electronic properties of electron selective layers and new materials development for hole selective layers will also be presented.


    bob电竞竞猜